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– Getting to know each other
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• Learning LLVM
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Syllabus: Who Are We?
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Course Information: Where to Get?

• Course Website: 
http://www.cs.toronto.edu/~pekhimenko/courses/cscd70-w1
9/ 
– Announcements, Syllabus, Course Info, Lecture Notes, 

Tutorial Notes, Assignments
• Piazza: 

https://piazza.com/utoronto.ca/winter2019/cscd70/home
– Questions/Discussions, Syllabus, Announcements

• Quercus
– Emails/announcements

• Your email
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Useful Textbook
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Why Computing Matters (So Much)?
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WHAT IS THE DIFFERENCE BETWEEN 
THE COMPUTING INDUSTRY AND THE 

PAPER TOWEL INDUSTRY?
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CAN WE CONTINUE BEING AN 
INDUSTRY OF NEW POSSIBILITIES?
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Moore’s Law
Or, how we became an industry of new possibilities

• Double the number of transistors
• Build higher performance

general-purpose processors
– Make the transistors available to masses
– Increase performance (1.8×↑)
– Lower the cost of computing (1.8×↓)
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What is the catch?
Powering the transistors without melting the chip
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Looking back
Evolution of processors
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Any Solution Moving Forward?
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Heterogeneity and Specialization

18

GPU

FPGAMulticore
CPUs

Low Power CPUs

Custom 
Logic

Catapult

Halide



Programmability versus Efficiency

19

Efficiency

Pr
og

ra
m

m
ab

ili
ty

General-Purpose Processors

FPGAs
ASICs

GPUs

SIMD Units

We need compilers!



Introduction to Compilers

• What would you get out of this course?

• Structure of a Compiler

• Optimization Example
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What Do Compilers Do?

1. Translate one language into another
– e.g., convert C++ into x86 object code
– difficult for “natural” languages, but feasible for 

computer languages

2. Improve (i.e. “optimize”) the code
– e.g., make the code run 3 times faster

• or more energy efficient, more robust, etc.
– driving force behind modern processor design
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How Can the Compiler Improve 
Performance?

Execution time = Operation count * Machine cycles per operation

• Minimize the number of operations 
– arithmetic operations, memory accesses

• Replace expensive operations with simpler ones
– e.g., replace 4-cycle multiplication with 1-cycle shift

• Minimize cache misses 
– both data and instruction accesses

• Perform work in parallel
– instruction scheduling within a thread
– parallel execution across multiple threads
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What Would You Get Out of This 
Course?
• Basic knowledge of existing compiler 

optimizations

• Hands-on experience in constructing 
optimizations within a fully functional research 
compiler

• Basic principles and theory for the development 
of new optimizations
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Structure of a Compiler

• Optimizations are performed on an “intermediate 
form”
– similar to a generic RISC instruction set

• Allows easy portability to multiple source languages, 
target machines
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Ingredients in a Compiler Optimization

• Formulate optimization problem 
– Identify opportunities of optimization

• applicable across many programs
• affect key parts of the program (loops/recursions)
• amenable to “efficient enough” algorithm

• Representation
– Must abstract essential details relevant to 

optimization
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Ingredients in a Compiler Optimization
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Ingredients in a Compiler Optimization

• Formulate optimization problem 
– Identify opportunities of optimization

• applicable across many programs
• affect key parts of the program (loops/recursions)
• amenable to “efficient enough” algorithm

• Representation
– Must abstract essential details relevant to optimization

• Analysis 
– Detect when it is desirable and safe to apply transformation 

• Code Transformation

• Experimental Evaluation (and repeat process)
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Representation: Instructions
• Three-address code

A := B op C
• LHS: name of variable e.g. x, A[t] (address of A + contents of 
t)

• RHS: value

• Typical instructions
A := B op C
A := unaryop B

A := B
GOTO s
IF A relop B GOTO s
CALL  f
RETURN
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Optimization Example
• Bubblesort program that sorts an array A that is allocated in 

static storage:
– an element of A requires four bytes of a byte-addressed machine
– elements of A are numbered 1 through n (n is a variable)
– A[j] is in location &A+4*(j-1)

FOR i := n-1 DOWNTO 1 DO
   FOR j := 1 TO i DO
      IF A[j]> A[j+1] THEN BEGIN

         temp := A[j];
         A[j] := A[j+1];
         A[j+1] := temp

      END
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Translated Code
  i := n-1

S5:  if i<1 goto s1
  j := 1

s4:  if j>i goto s2
  t1 := j-1

     t2 := 4*t1
     t3 := A[t2]   ;A[j]
     t4 := j+1

  t5 := t4-1
  t6 := 4*t5
  t7 := A[t6]   ;A[j+1]

     if t3<=t7 goto s3

    t8 :=j-1
    t9 := 4*t8
    temp := A[t9]  ;A[j]
    t10 := j+1
    t11:= t10-1
    t12 := 4*t11
    t13 := A[t12]  ;A[j+1]
    t14 := j-1
    t15 := 4*t14
    A[t15] := t13 ;A[j]:=A[j+1]
    t16 := j+1
    t17 := t16-1
    t18 := 4*t17
    A[t18]:=temp  ;A[j+1]:=temp
s3: j := j+1
    goto S4
S2: i := i-1

 goto s5
s1:
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FOR i := n-1 DOWNTO 1 DO
  FOR j := 1 TO i DO
    IF A[j]> A[j+1] THEN BEGIN

temp := A[j];
A[j] := A[j+1];
A[j+1] := temp

    END



Representation: a Basic Block

• Basic block = a sequence of 3-address statements 
– only the first statement can be reached from outside the block 

(no branches into middle of block)
– all the statements are executed consecutively if the first one is 

(no branches out or halts except perhaps at end of block)

• We require basic blocks to be maximal
– they cannot be made larger without violating the conditions

• Optimizations within a basic block are local optimizations
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Flow Graphs

• Nodes: basic blocks

• Edges: Bi -> Bj, iff Bj can follow Bi immediately in 
some execution
– Either first instruction of Bj is target of a goto at end of 

Bi
– Or, Bj physically follows Bi, which does not end in an 

unconditional goto.

• The block led by first statement of the program is 
the start, or entry node.
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Find the Basic Blocks
  i := n-1

S5:  if i<1 goto s1
  j := 1

s4:  if j>i goto s2
  t1 := j-1

     t2 := 4*t1
     t3 := A[t2]   ;A[j]
     t4 := j+1

  t5 := t4-1
  t6 := 4*t5
  t7 := A[t6]   ;A[j+1]

     if t3<=t7 goto s3

    t8 :=j-1
    t9 := 4*t8
    temp := A[t9]  ;A[j]
    t10 := j+1
    t11:= t10-1
    t12 := 4*t11
    t13 := A[t12]  ;A[j+1]
    t14 := j-1
    t15 := 4*t14
    A[t15] := t13 ;A[j]:=A[j+1]
    t16 := j+1
    t17 := t16-1
    t18 := 4*t17
    A[t18]:=temp  ;A[j+1]:=temp
s3: j := j+1
    goto S4
S2: i := i-1

 goto s5
s1:
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Basic Blocks from Example
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Partitioning into Basic Blocks

• Identify the leader of each basic block 
–  First instruction 
–  Any target of a jump 
–  Any instruction immediately following a jump

• Basic block starts at leader & ends at 
instruction immediately before a leader (or 
the last instruction)
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Sources of Optimizations

• Algorithm optimization

• Algebraic optimization
         A := B+0     =>     A := B

• Local optimizations 
– within a basic block -- across instructions

• Global optimizations 
– within a flow graph -- across basic blocks

• Interprocedural analysis
– within a program -- across procedures (flow graphs)
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Local Optimizations

• Analysis & transformation performed within a basic 
block

• No control flow information is considered
• Examples of local optimizations:

– local common subexpression elimination 
analysis: same expression evaluated more than once in b. 
transformation: replace with single calculation

– local constant folding or elimination
analysis: expression can be evaluated at compile time
transformation: replace by constant, compile-time value

– dead code elimination
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  i := n-1
S5:  if i<1 goto s1

  j := 1
s4:  if j>i goto s2

  t1 := j-1
     t2 := 4*t1
     t3 := A[t2]   ;A[j]
     t4 := j+1

  t5 := t4-1
  t6 := 4*t5
  t7 := A[t6]   ;A[j+1]

     if t3<=t7 goto s3

Example
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    t8 :=j-1
    t9 := 4*t8
    temp := A[t9]  ;A[j]
    t10 := j+1
    t11:= t10-1
    t12 := 4*t11
    t13 := A[t12]  ;A[j+1]
    t14 := j-1
    t15 := 4*t14
    A[t15] := t13 ;A[j]:=A[j+1]
    t16 := j+1
    t17 := t16-1
    t18 := 4*t17
    A[t18]:=temp  ;A[j+1]:=temp
s3: j := j+1
    goto S4
S2: i := i-1

 goto s5
s1:



Example
B1: i := n-1
B2: if i<1 goto out
B3: j := 1
B4: if j>i goto B5
B6: t1 := j-1
    t2 := 4*t1
    t3 := A[t2]     ;A[j]
    t6 := 4*j
    t7 := A[t6]    ;A[j+1]
    if t3<=t7 goto B8

B7: t8 :=j-1
    t9 := 4*t8
    temp := A[t9]  ;temp:=A[j]
    t12 := 4*j
    t13 := A[t12]  ;A[j+1]
    A[t9]:= t13    ;A[j]:=A[j+1]
    A[t12]:=temp   ;A[j+1]:=temp
B8: j := j+1
    goto B4
B5: i := i-1
    goto B2
out:
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(Intraprocedural) Global 
Optimizations
• Global versions of local optimizations

– global common subexpression elimination
– global constant propagation 
– dead code elimination

• Loop optimizations

– reduce code to be executed in each iteration
– code motion
– induction variable elimination

• Other control structures

– Code hoisting: eliminates copies of identical code on 
parallel paths in a flow graph to reduce code size.
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Example
B1: i := n-1
B2: if i<1 goto out
B3: j := 1
B4: if j>i goto B5
B6: t1 := j-1
    t2 := 4*t1
    t3 := A[t2]     ;A[j]
    t6 := 4*j
    t7 := A[t6]    ;A[j+1]
    if t3<=t7 goto B8

B7: t8 :=j-1
    t9 := 4*t8
    temp := A[t9] ;temp:=A[j]
    t12 := 4*j
  t13 := A[t12] ;A[j+1]
    A[t9]:= t13   ;A[j]:=A[j+1]
    A[t12]:=temp  ;A[j+1]:=temp
B8: j := j+1
    goto B4
B5: i := i-1
    goto B2
out:

42



Example (After Global CSE)
B1: i := n-1
B2: if i<1 goto out
B3: j := 1
B4: if j>i goto B5
B6: t1 := j-1
    t2 := 4*t1
    t3 := A[t2]     ;A[j]
    t6 := 4*j
    t7 := A[t6]    ;A[j+1]
    if t3<=t7 goto B8

B7: A[t2] := t7        
    A[t6] := t3
B8: j := j+1
    goto B4
B5: i := i-1
    goto B2
out:
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Induction Variable Elimination

• Intuitively
– Loop indices are induction variables

(counting iterations)
– Linear functions of the loop indices are also induction variables

(for accessing arrays)

• Analysis: detection of induction variable

• Optimizations
– strength reduction: 

• replace multiplication by additions
– elimination of loop index: 

• replace termination by tests on other induction variables
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Example
B1: i := n-1
B2: if i<1 goto out
B3: j := 1
B4: if j>i goto B5
B6: t1 := j-1
    t2 := 4*t1
    t3 := A[t2]     ;A[j]
    t6 := 4*j
    t7 := A[t6]    ;A[j+1]
    if t3<=t7 goto B8

B7: A[t2] := t7        
    A[t6] := t3    
B8: j := j+1
    goto B4
B5: i := i-1
    goto B2
out:
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Example (After IV Elimination)
B1:  i := n-1
B2:  if i<1 goto out
B3:  t2 := 0
     t6 := 4
B4:  t19 := 4*I
     if t6>t19 goto B5
B6:  t3 := A[t2]
     t7 := A[t6]  ;A[j+1]
     if t3<=t7 goto B8

B7:  A[t2] := t7
     A[t6] := t3
B8:  t2 := t2+4
     t6 := t6+4
     goto B4
B5:  i := i-1
     goto B2
out:
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Loop Invariant Code Motion

• Analysis
– a computation is done within a loop and
– result of the computation is the same as long as 

we keep going around the loop

• Transformation
– move the computation outside the loop
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Machine Dependent Optimizations

• Register allocation
• Instruction scheduling
• Memory hierarchy optimizations
• etc.
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Local Optimizations (More Details)

• Common subexpression elimination
– array expressions
– field access in records
– access to parameters
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Graph Abstractions

50

Example 1:
• grammar (for bottom-up parsing): 
E -> E + T | E – T | T, T -> T*F | F, F -> ( E ) | id 
• expression: a+a*(b-c)+(b-c)*d



Graph Abstractions
Example 1: an expression 

a+a*(b-c)+(b-c)*d

Optimized code:
t1 = b - c
t2 = a * t1
t3 = a + t2
t4 = t1 * d
t5 = t3 + t4
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How well do DAGs hold up across 
statements?
• Example 2
  a = b+c;
   b = a-d;
   c = b+c;
   d = a-d;

Is this optimized code correct?
a = b+c;
d = a-d;
c = d+c;
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DAG – directed acyclic graph



Critique of DAGs

• Cause of problems
– Assignment statements
– Value of variable depends on TIME

• How to fix problem?
– build graph in order of execution 
– attach variable name to latest value

• Final graph created is not very interesting
– Key: variable->value mapping across time
– loses appeal of abstraction
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Value Number: Another Abstraction
• More explicit with respect to VALUES, and TIME

• each value has its own “number”
– common subexpression means same value number

• var2value: current map of variable to value 
– used to determine the value number of current expression

                            r1 + r2 => var2value(r1)+var2value(r2)
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Algorithm
Data structure:
     VALUES = Table of
        expression     //[OP, valnum1, valnum2}
        var            //name of variable currently holding expression

For each instruction (dst = src1 OP src2) in execution order

  valnum1 = var2value(src1); valnum2 = var2value(src2);

  IF [OP, valnum1, valnum2] is in VALUES
     v = the index of expression
     Replace instruction with CPY dst = VALUES[v].var
  ELSE
     Add 
        expression = [OP, valnum1, valnum2]
        var        = dst
     to VALUES
     v = index of new entry; tv is new temporary for v
     Replace instruction with: tv = VALUES[valnum1].var OP VALUES[valnum2].var
                               dst = tv;

  set_var2value (dst, v)
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More Details

• What are the initial values of the variables?
– values at beginning of the basic block

• Possible implementations:
– Initialization: create “initial values” for all 

variables
– Or dynamically create them as they are used

• Implementation of VALUES and var2value: 
hash tables
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Example

Assign: a->r1,b->r2,c->r3,d->r4
a = b+c;     ADD t1 = r2,r3
             CPY r1 = t1
b = a-d;     SUB t2 = r1,r4
             CPY r2 = t2
c = b+c;     ADD t3 = r2,r3
             CPY r3 = t3
d = a-d;     SUB t4 = r1,r4
             CPY r4 = t4
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Conclusions

• Comparisons of two abstractions
– DAGs
– Value numbering

• Value numbering
– VALUE: distinguish between variables and VALUES
– TIME

• Interpretation of instructions in order of execution
• Keep dynamic state information
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