
CSC D70:
Compiler Optimization

Prof. Gennady Pekhimenko
University of Toronto

Winter 2019

The content of this lecture is adapted from the lectures of
Todd Mowry and Phillip Gibbons

CSC D70:
Compiler Optimization
Introduction, Logistics

Prof. Gennady Pekhimenko
University of Toronto

Winter 2019

The content of this lecture is adapted from the lectures of
Todd Mowry and Phillip Gibbons

Summary
• Syllabus
– Course Introduction, Logistics, Grading

• Information Sheet
– Getting to know each other

• Assignments
• Learning LLVM
• Compiler Basics

3

Syllabus: Who Are We?

4

Gennady (Gena) Pekhimenko

Assistant Professor, Instructor
pekhimenko@cs.toronto.edu
http://www.cs.toronto.edu/~pekhimenko/
Office: BA 5232 / IC 454
PhD from Carnegie Mellon
Worked at Microsoft Research, NVIDIA, IBM
Research interests: computer architecture, systems, machine
learning, compilers, hardware acceleration

Computer Systems and Networking Group (CSNG)
EcoSystem Group

Bojian Zheng

MSc. PhD Student, TA
bojian@cs.toronto.edu

Office: BA 5214 D02
BSc. from UofT ECE
Research interests: computer architecture, GPUs, machine
learning

Computer Systems and Networking Group (CSNG)
EcoSystem Group

Course Information: Where to Get?

• Course Website:
http://www.cs.toronto.edu/~pekhimenko/courses/cscd70-w1
9/
– Announcements, Syllabus, Course Info, Lecture Notes,

Tutorial Notes, Assignments
• Piazza:

https://piazza.com/utoronto.ca/winter2019/cscd70/home
– Questions/Discussions, Syllabus, Announcements

• Quercus
– Emails/announcements

• Your email

7

Useful Textbook

8

CSC D70:
Compiler Optimization
Compiler Introduction

Prof. Gennady Pekhimenko
University of Toronto

Winter 2019

The content of this lecture is adapted from the lectures of
Todd Mowry and Phillip Gibbons

Why Computing Matters (So Much)?

10

WHAT IS THE DIFFERENCE BETWEEN
THE COMPUTING INDUSTRY AND THE

PAPER TOWEL INDUSTRY?

11

12

Industry of new possibilities

Industry of replacement

1971 2017

?

CAN WE CONTINUE BEING AN
INDUSTRY OF NEW POSSIBILITIES?

13

Personalized
healthcare

Virtual
reality

Real-time
translators

Moore’s Law
Or, how we became an industry of new possibilities

• Double the number of transistors
• Build higher performance

general-purpose processors
– Make the transistors available to masses
– Increase performance (1.8×↑)
– Lower the cost of computing (1.8×↓)

14

Every 2 Years

What is the catch?
Powering the transistors without melting the chip

15

Moore’s Law

W

W

Looking back
Evolution of processors

16

1971 2003

Single-core Era

2004

2013

Multicore Era

Dennard scaling
broke

740 KHz

3.4 GHz 3.5 GHz

Any Solution Moving Forward?

17

GPUs
(Graphics
Processing
Units)

Hardware accelerators:

FPGAs
(Field Programmable
Gate Arrays)

TPUs
(Tensor
Processing
 Units)

Heterogeneity and Specialization

18

GPU

FPGAMulticore
CPUs

Low Power CPUs

Custom
Logic

Catapult

Halide

Programmability versus Efficiency

19

Efficiency

Pr
og

ra
m

m
ab

ili
ty

General-Purpose Processors

FPGAs
ASICs

GPUs

SIMD Units

We need compilers!

Introduction to Compilers

• What would you get out of this course?

• Structure of a Compiler

• Optimization Example

20

What Do Compilers Do?

1. Translate one language into another
– e.g., convert C++ into x86 object code
– difficult for “natural” languages, but feasible for

computer languages

2. Improve (i.e. “optimize”) the code
– e.g., make the code run 3 times faster

• or more energy efficient, more robust, etc.
– driving force behind modern processor design

21

How Can the Compiler Improve
Performance?

Execution time = Operation count * Machine cycles per operation

• Minimize the number of operations
– arithmetic operations, memory accesses

• Replace expensive operations with simpler ones
– e.g., replace 4-cycle multiplication with 1-cycle shift

• Minimize cache misses
– both data and instruction accesses

• Perform work in parallel
– instruction scheduling within a thread
– parallel execution across multiple threads

22

What Would You Get Out of This
Course?
• Basic knowledge of existing compiler

optimizations

• Hands-on experience in constructing
optimizations within a fully functional research
compiler

• Basic principles and theory for the development
of new optimizations

23

Structure of a Compiler

• Optimizations are performed on an “intermediate
form”
– similar to a generic RISC instruction set

• Allows easy portability to multiple source languages,
target machines

24

x86

ARM

SPARC

MIPS

Ingredients in a Compiler Optimization

• Formulate optimization problem
– Identify opportunities of optimization

• applicable across many programs
• affect key parts of the program (loops/recursions)
• amenable to “efficient enough” algorithm

• Representation
– Must abstract essential details relevant to

optimization

25

Ingredients in a Compiler Optimization

26

Ingredients in a Compiler Optimization

• Formulate optimization problem
– Identify opportunities of optimization

• applicable across many programs
• affect key parts of the program (loops/recursions)
• amenable to “efficient enough” algorithm

• Representation
– Must abstract essential details relevant to optimization

• Analysis
– Detect when it is desirable and safe to apply transformation

• Code Transformation

• Experimental Evaluation (and repeat process)

27

Representation: Instructions
• Three-address code

A := B op C
• LHS: name of variable e.g. x, A[t] (address of A + contents of
t)

• RHS: value

• Typical instructions
A := B op C
A := unaryop B

A := B
GOTO s
IF A relop B GOTO s
CALL f
RETURN

28

Optimization Example
• Bubblesort program that sorts an array A that is allocated in

static storage:
– an element of A requires four bytes of a byte-addressed machine
– elements of A are numbered 1 through n (n is a variable)
– A[j] is in location &A+4*(j-1)

FOR i := n-1 DOWNTO 1 DO
 FOR j := 1 TO i DO
 IF A[j]> A[j+1] THEN BEGIN

 temp := A[j];
 A[j] := A[j+1];
 A[j+1] := temp

 END

29

Translated Code
 i := n-1

S5: if i<1 goto s1
 j := 1

s4: if j>i goto s2
 t1 := j-1

 t2 := 4*t1
 t3 := A[t2] ;A[j]
 t4 := j+1

 t5 := t4-1
 t6 := 4*t5
 t7 := A[t6] ;A[j+1]

 if t3<=t7 goto s3

 t8 :=j-1
 t9 := 4*t8
 temp := A[t9] ;A[j]
 t10 := j+1
 t11:= t10-1
 t12 := 4*t11
 t13 := A[t12] ;A[j+1]
 t14 := j-1
 t15 := 4*t14
 A[t15] := t13 ;A[j]:=A[j+1]
 t16 := j+1
 t17 := t16-1
 t18 := 4*t17
 A[t18]:=temp ;A[j+1]:=temp
s3: j := j+1
 goto S4
S2: i := i-1

 goto s5
s1:

30

FOR i := n-1 DOWNTO 1 DO
 FOR j := 1 TO i DO
 IF A[j]> A[j+1] THEN BEGIN

temp := A[j];
A[j] := A[j+1];
A[j+1] := temp

 END

Representation: a Basic Block

• Basic block = a sequence of 3-address statements
– only the first statement can be reached from outside the block

(no branches into middle of block)
– all the statements are executed consecutively if the first one is

(no branches out or halts except perhaps at end of block)

• We require basic blocks to be maximal
– they cannot be made larger without violating the conditions

• Optimizations within a basic block are local optimizations

31

Flow Graphs

• Nodes: basic blocks

• Edges: Bi -> Bj, iff Bj can follow Bi immediately in
some execution
– Either first instruction of Bj is target of a goto at end of

Bi
– Or, Bj physically follows Bi, which does not end in an

unconditional goto.

• The block led by first statement of the program is
the start, or entry node.

32

Find the Basic Blocks
 i := n-1

S5: if i<1 goto s1
 j := 1

s4: if j>i goto s2
 t1 := j-1

 t2 := 4*t1
 t3 := A[t2] ;A[j]
 t4 := j+1

 t5 := t4-1
 t6 := 4*t5
 t7 := A[t6] ;A[j+1]

 if t3<=t7 goto s3

 t8 :=j-1
 t9 := 4*t8
 temp := A[t9] ;A[j]
 t10 := j+1
 t11:= t10-1
 t12 := 4*t11
 t13 := A[t12] ;A[j+1]
 t14 := j-1
 t15 := 4*t14
 A[t15] := t13 ;A[j]:=A[j+1]
 t16 := j+1
 t17 := t16-1
 t18 := 4*t17
 A[t18]:=temp ;A[j+1]:=temp
s3: j := j+1
 goto S4
S2: i := i-1

 goto s5
s1:

33

Basic Blocks from Example

34

Partitioning into Basic Blocks

• Identify the leader of each basic block
– First instruction
– Any target of a jump
– Any instruction immediately following a jump

• Basic block starts at leader & ends at
instruction immediately before a leader (or
the last instruction)

35

36ALSU pp. 529-531

Sources of Optimizations

• Algorithm optimization

• Algebraic optimization
 A := B+0 => A := B

• Local optimizations
– within a basic block -- across instructions

• Global optimizations
– within a flow graph -- across basic blocks

• Interprocedural analysis
– within a program -- across procedures (flow graphs)

37

Local Optimizations

• Analysis & transformation performed within a basic
block

• No control flow information is considered
• Examples of local optimizations:

– local common subexpression elimination
analysis: same expression evaluated more than once in b.
transformation: replace with single calculation

– local constant folding or elimination
analysis: expression can be evaluated at compile time
transformation: replace by constant, compile-time value

– dead code elimination

38

 i := n-1
S5: if i<1 goto s1

 j := 1
s4: if j>i goto s2

 t1 := j-1
 t2 := 4*t1
 t3 := A[t2] ;A[j]
 t4 := j+1

 t5 := t4-1
 t6 := 4*t5
 t7 := A[t6] ;A[j+1]

 if t3<=t7 goto s3

Example

39

 t8 :=j-1
 t9 := 4*t8
 temp := A[t9] ;A[j]
 t10 := j+1
 t11:= t10-1
 t12 := 4*t11
 t13 := A[t12] ;A[j+1]
 t14 := j-1
 t15 := 4*t14
 A[t15] := t13 ;A[j]:=A[j+1]
 t16 := j+1
 t17 := t16-1
 t18 := 4*t17
 A[t18]:=temp ;A[j+1]:=temp
s3: j := j+1
 goto S4
S2: i := i-1

 goto s5
s1:

Example
B1: i := n-1
B2: if i<1 goto out
B3: j := 1
B4: if j>i goto B5
B6: t1 := j-1
 t2 := 4*t1
 t3 := A[t2] ;A[j]
 t6 := 4*j
 t7 := A[t6] ;A[j+1]
 if t3<=t7 goto B8

B7: t8 :=j-1
 t9 := 4*t8
 temp := A[t9] ;temp:=A[j]
 t12 := 4*j
 t13 := A[t12] ;A[j+1]
 A[t9]:= t13 ;A[j]:=A[j+1]
 A[t12]:=temp ;A[j+1]:=temp
B8: j := j+1
 goto B4
B5: i := i-1
 goto B2
out:

40

(Intraprocedural) Global
Optimizations
• Global versions of local optimizations

– global common subexpression elimination
– global constant propagation
– dead code elimination

• Loop optimizations

– reduce code to be executed in each iteration
– code motion
– induction variable elimination

• Other control structures

– Code hoisting: eliminates copies of identical code on
parallel paths in a flow graph to reduce code size.

41

Example
B1: i := n-1
B2: if i<1 goto out
B3: j := 1
B4: if j>i goto B5
B6: t1 := j-1
 t2 := 4*t1
 t3 := A[t2] ;A[j]
 t6 := 4*j
 t7 := A[t6] ;A[j+1]
 if t3<=t7 goto B8

B7: t8 :=j-1
 t9 := 4*t8
 temp := A[t9] ;temp:=A[j]
 t12 := 4*j
 t13 := A[t12] ;A[j+1]
 A[t9]:= t13 ;A[j]:=A[j+1]
 A[t12]:=temp ;A[j+1]:=temp
B8: j := j+1
 goto B4
B5: i := i-1
 goto B2
out:

42

Example (After Global CSE)
B1: i := n-1
B2: if i<1 goto out
B3: j := 1
B4: if j>i goto B5
B6: t1 := j-1
 t2 := 4*t1
 t3 := A[t2] ;A[j]
 t6 := 4*j
 t7 := A[t6] ;A[j+1]
 if t3<=t7 goto B8

B7: A[t2] := t7
 A[t6] := t3
B8: j := j+1
 goto B4
B5: i := i-1
 goto B2
out:

43

Induction Variable Elimination

• Intuitively
– Loop indices are induction variables

(counting iterations)
– Linear functions of the loop indices are also induction variables

(for accessing arrays)

• Analysis: detection of induction variable

• Optimizations
– strength reduction:

• replace multiplication by additions
– elimination of loop index:

• replace termination by tests on other induction variables

44

Example
B1: i := n-1
B2: if i<1 goto out
B3: j := 1
B4: if j>i goto B5
B6: t1 := j-1
 t2 := 4*t1
 t3 := A[t2] ;A[j]
 t6 := 4*j
 t7 := A[t6] ;A[j+1]
 if t3<=t7 goto B8

B7: A[t2] := t7
 A[t6] := t3
B8: j := j+1
 goto B4
B5: i := i-1
 goto B2
out:

45

Example (After IV Elimination)
B1: i := n-1
B2: if i<1 goto out
B3: t2 := 0
 t6 := 4
B4: t19 := 4*I
 if t6>t19 goto B5
B6: t3 := A[t2]
 t7 := A[t6] ;A[j+1]
 if t3<=t7 goto B8

B7: A[t2] := t7
 A[t6] := t3
B8: t2 := t2+4
 t6 := t6+4
 goto B4
B5: i := i-1
 goto B2
out:

46

Loop Invariant Code Motion

• Analysis
– a computation is done within a loop and
– result of the computation is the same as long as

we keep going around the loop

• Transformation
– move the computation outside the loop

47

Machine Dependent Optimizations

• Register allocation
• Instruction scheduling
• Memory hierarchy optimizations
• etc.

48

Local Optimizations (More Details)

• Common subexpression elimination
– array expressions
– field access in records
– access to parameters

49

Graph Abstractions

50

Example 1:
• grammar (for bottom-up parsing):
E -> E + T | E – T | T, T -> T*F | F, F -> (E) | id
• expression: a+a*(b-c)+(b-c)*d

Graph Abstractions
Example 1: an expression

a+a*(b-c)+(b-c)*d

Optimized code:
t1 = b - c
t2 = a * t1
t3 = a + t2
t4 = t1 * d
t5 = t3 + t4

51

How well do DAGs hold up across
statements?
• Example 2
 a = b+c;
 b = a-d;
 c = b+c;
 d = a-d;

Is this optimized code correct?
a = b+c;
d = a-d;
c = d+c;

52

DAG – directed acyclic graph

Critique of DAGs

• Cause of problems
– Assignment statements
– Value of variable depends on TIME

• How to fix problem?
– build graph in order of execution
– attach variable name to latest value

• Final graph created is not very interesting
– Key: variable->value mapping across time
– loses appeal of abstraction

53

Value Number: Another Abstraction
• More explicit with respect to VALUES, and TIME

• each value has its own “number”
– common subexpression means same value number

• var2value: current map of variable to value
– used to determine the value number of current expression

 r1 + r2 => var2value(r1)+var2value(r2)

54

Algorithm
Data structure:
 VALUES = Table of
 expression //[OP, valnum1, valnum2}
 var //name of variable currently holding expression

For each instruction (dst = src1 OP src2) in execution order

 valnum1 = var2value(src1); valnum2 = var2value(src2);

 IF [OP, valnum1, valnum2] is in VALUES
 v = the index of expression
 Replace instruction with CPY dst = VALUES[v].var
 ELSE
 Add
 expression = [OP, valnum1, valnum2]
 var = dst
 to VALUES
 v = index of new entry; tv is new temporary for v
 Replace instruction with: tv = VALUES[valnum1].var OP VALUES[valnum2].var
 dst = tv;

 set_var2value (dst, v)

55

More Details

• What are the initial values of the variables?
– values at beginning of the basic block

• Possible implementations:
– Initialization: create “initial values” for all

variables
– Or dynamically create them as they are used

• Implementation of VALUES and var2value:
hash tables

56

Example

Assign: a->r1,b->r2,c->r3,d->r4
a = b+c; ADD t1 = r2,r3
 CPY r1 = t1
b = a-d; SUB t2 = r1,r4
 CPY r2 = t2
c = b+c; ADD t3 = r2,r3
 CPY r3 = t3
d = a-d; SUB t4 = r1,r4
 CPY r4 = t4

57

Conclusions

• Comparisons of two abstractions
– DAGs
– Value numbering

• Value numbering
– VALUE: distinguish between variables and VALUES
– TIME

• Interpretation of instructions in order of execution
• Keep dynamic state information

58

CSC D70:
Compiler Optimization
Introduction, Logistics

Prof. Gennady Pekhimenko
University of Toronto

Winter 2019

The content of this lecture is adapted from the lectures of
Todd Mowry and Phillip Gibbons

